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Abstract. We determine the probability distribution of the spectral form factor from random
matrix theory in the orthogonal and unitary case. We show that it is an exponential one, parametrized
by the average value of this quantity.

1. Introduction

A quantity of central interest in the study of random matrices and their application to problems
of quantum chaos has been the spectral form factor.SN(k) defined as

SN(k) = 1

N

∣∣∣∣ N∑
j=i

eikλj

∣∣∣∣2
theλj beingN eigenvalues of a deterministic or random Hamiltonian.

Usually, after some unfolding of the eigenvalues has been made, so that their average
distance is fixed to be 1, one computes either its spectral average, or some other ensemble
average and compares its value to the average value given by random matrix theory. But the
question arises to know if this average value is representative of the sample considered. If it is
so, one says in the physics literature that this quantity is self-averaging.

Nuclear data collected by Bohigas [1], for example, show that the average value describes
only the mean trend of this quantity and that large fluctuations around it are observed. A
similar behaviour is observed in numerical results for the form factor of the hydrogen atom in
a strong magnetic field [2].

As recently emphasized by Prange [3], these results point to the fact that the spectral form
factor is not self-averaging. This conclusion was also reached previously by other authors
[4–6]. The question then naturally arises of how to determine the probability distribution
of the form factor. Argamanet al [6] used a semi-classical argument to conclude that this
distribution should be exponential. Prange [3] reached the same conclusion by using a random
walk analogy.

In the context of random matrix theory, this is a well-posed problem and the purpose of
this paper is to prove rigorously that random matrix theory (in the orthogonal and unitary case
at least) does indeed predict anexponential distributionfor the form factor. The form factor is
therefore obviously not self-averaging, but its probability distribution is parametrized by one
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quantity only, its average value. This shows that the computation of the average value is really
the basic quantity to compute.

It would be, of course, quite interesting to see if this result of random matrix theory
explains the dispersion of the experimental data observed by Bohigas [1].

Let us note, first, that we need to keep the parameterk in SN(k) strictly positive in order to
have a well-posed problem, since whenk = 0 there is no limiting distribution. Moreover, we
will work with the ensemble which is technically the simplest one, namely the circular ensem-
ble. This is justified from the known fact that after unfolding all correlations become universal.
Therefore, the result should be unchanged if we take, for example, Gaussian ensembles.

The strategy used to obtain the probability distribution is the following: we compute the
generating function of the random variables(

1√
N

N∑
j=1

coskNθj ,
1√
N

N∑
j=1

sinkNθj

)
θj being the eigenvalue of the circular ensemble.

This generating function is written in the form

G =
〈 N∏
j=1

u(θj )

〉
where

u(θ) = exp

[
2i√
N

Reu eikNθ

]
u being a complex number. This quantity is expressed in the orthogonal case by means of
the square root of a determinant and in the unitary case by means of a determinant. These
determinants are of the form det [1 +T ], T being some matrix.

Then, using the identity

det(1 +T ) = exp

[ ∞∑
n=1

(−1)n−1

n
tr T n

]
we would like to show that, whenN tends to infinity, only the first two terms in this expansion
remain, namely

tr T − 1
2 tr T 2

which are then computed explicitly.
In the unitary case, this can be done straightforwardly. The orthogonal case is different.

In this case, trT n is given by non-absolutely convergent integrals, and therefore the fact that it
vanishes in the limitN tends to infinity, whenn > 3, is the result of rather subtle cancellations.
We tackle this problem by a set of ‘renormalizations’ of the matrix, to transform it to a more
reasonable matrix.
In any case, the final results are that in both cases, the generation function is asymptotically
Gaussian. This shows that

x = 1√
N

N∑
j=1

coskNθj y = 1√
N

N∑
j=1

sinkNθj

are Gaussian random variables with a distribution proportional to

exp

[
− 1

2σ
(x2 + y2)

]
and this shows that the probability distribution of the form factorSN(k) is exponential.
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More technically,

lim
N→∞

pr{SN(k) 6 x} =
∫ x

0

dy

s
exp

[
− y
s

]
wheres is the average value ofSN(k), in the largeN limit. It is given (in Mehta’s notation) by

s = 1− b(k)
whereb(k) is the Fourier transform of the cluster two-point function.

The explicit forms of these functions are given in Mehta’s book [7] and they are produced
here at the end of sections 2 and 3.

2. The orthogonal case

The generating function can be written as

G =
〈 N∏
i=1

u(θi)

〉
(2.1)

with

u(θ) = expv0(θ)

v0(θ) = iu√
N

eikNθ +
iu∗√
N

e−ikNθ .
(2.2)

In Mehta’s book [7], this quantity is expressed by means of a determinant (equations 10.4.5
and 10.4.6 of this reference)

G2 = detF (2.3)

where ifN is even, theN ×N matrixf is given by

Fp,q = ip

4π

∫ π∫
−π

u(θ)u(ϕ)σ (θ − ϕ) eipϕ−iqθ dθ dϕ (2.4)

with

σ(θ) =
{

1 if θ > 0

−1 if θ < 0
(2.5)

and

p, q = −N
2

+
1

2
,−−N

2
+

3

2
, . . . ,

N

2
− 1

2
. (2.6)

Whenu(θ) = 1,G = 1, so that we can write

G = [det(1 +T )]1/2. (2.7)

The matrixT is defined as

Tp,q = ip

4π

∫ π∫
−π

[v(θ) + v(ϕ) + v(θ)v(ϕ)]σ(θ − ϕ) eipϕ−iqθ (2.8)

where

v(θ) = u(θ)−1. (2.9)

Basically, we want to compute this determinant by using the formula

det(1 +T ) = exp tr ln(1 +T ) = exp
∞∑
n=1

(−1)n−1

n
tr T n (2.10)
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and show that trT n vanishes whenN → ∞, andn > 3. However, this results from rather
subtle cancellations between the various terms appearing in trT n. We will arrive, therefore, at
the result by ‘renormalizing’ the matrixT . For this purpose, we introduce the following three
auxiliary matrices:

Ap,q = 1

2π

∫ π

−π
dθ e+i(p−q)θ v(θ) (2.11)

Bp,q = p

q
Ap,q (2.12)

Cp,q = ip

4π

∫ π∫
−π

v(θ)v(ϕ)σ (θ − ϕ) eipϕ−iqθ dθ dϕ (2.13)

so that we have

T = A +B +C. (2.14)

Therefore, we can also write the determinant as

det(1 +T ) = [det(1 +A)][det(1 +B)][det(1 +T1)] (2.15)

with

T1 = (1 +B)−1C(1 +A)−1− B(1 +B)−1A(1 +A)−1 (2.16)

assuming that the inverse of 1 +A and (1 +B) exist (this will be proven later).
Since

trAn = trBn

we have

det(1 +A) = det(1 +B) (2.17)

and

G = [det(1 +A)][det(1 +T1)]
1/2. (2.18)

We will show that trT n1 vanishes whenN → ∞, except forn = 1. The proof will be rather
long and we need to introduce some useful tools.

On the space of bounded functionsf (θ) with θ ∈ 3 = [−π, π ], we define operators by
their bounded kernel, in the usual way,

(Df )(θ) =
∫ π

−π
D(θ |ϕ)f (ϕ) dϕ (2.19)

so that the kernel of the product of two operatorsD andF will be given by

(DF)(θ |ϕ) =
∫ π

−π
dψ D(θ |ψ)F(ψ |ϕ). (2.20)

We will also introduce multiplication operators (always designated by small letters) as

(af )(θ) = a(θ)f (θ) (2.21)

so that the kernels ofaD andDa are respectively

(aD)(θ |ϕ) = a(θ)D(θ |ϕ) (Da)(θ |ϕ) = D(θ |ϕ)a(ϕ). (2.22)

We will also call the trace of an operator

TrD =
∫ π

−π
dϕ D(ϕ|ϕ) (2.23)
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assuming thatD(θ |ϕ) is continuous on the diagonal. Let us now introduce the operatorS of
kernel

S(θ |ϕ) = 1

2π

∑
q

e−iq(θ−ϕ). (2.24)

It appears naturally when we computeAn. Indeed, if(vS)0(ϕ|θ) = δ(ϕ − θ)
(An)p,q = 1

2π

∫ π∫
−π

dθ dϕ eipϕ−iqθ (vS)n−1(ϕ|θ)v(θ) (2.25)

and of course

(Bn)p,q = p

q
(An)p,q . (2.26)

Moreover,

trAn = Tr(vS)n. (2.27)

Formula (2.25) is easily proved by induction by writing

(An+1)p,q =
∑
q ′
(An)p,q ′ Aq ′,p

and inserting on the right-hand side the expression (2.25) forAn and (2.11) forA, and using
the definition (2.24) ofS(θ |ϕ).

(1 +A)−1 is defined through its series when it is convergent, which is certainly the case if
v is small enough.

Now, formally at least, we have

[A2(1 +A)−1]p,q = +1

2π

∫ π∫
−π

dθ dϕ eipϕ−iqθ

[
−
∞∑
n=2

(−vS)n−1(ϕ|θ)v(θ)
]
. (2.28)

In order to see if such series convergence and to estimate them, we now introduce some norms.
We will call for an operatorD with a bounded kernel

|D| = sup
(θ,ϕ)∈3

|D(ϕ|θ)|

|D|+ = sup
ϕ∈3

∫ π

−π
|D(ϕ|θ)| dθ (2.29)

|D|− = sup
θ∈3

∫ π

−π
|D(ϕ|θ)| dϕ

and for multiplication operatorsa

|a| = sup
θ∈3
|a(θ)|. (2.30)

We will use repeatedly a certain number of properties of these norms. Their proof follows
immediately from the definitions.

Property 1.

|AB| 6 2π |A||B|
|AB| 6 |A|+|B|
|AB| 6 |A||B|−
|AB|± 6 |A|±|B|±

(2.31)

sup(|aB|, |Ba|) 6 |a| |B|
sup(|aB|±, |Ba|±) 6 |a| |B|±.

(2.32)
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Consider now the operatorS. We have

S(θ |ϕ) = s(θ − ϕ) (2.33)

with

s(θ) = 1

2π

sin(Nθ/2)

sin(θ/2)
. (2.34)

From the inequality

|sinθ | > c|θ | (2.35)

which is valid if θ ∈ [0, π/2], wherec is some constant, we see that we have

|S| = O(N) |S|± = O(lnN). (2.36)

Now since

|v| = O

(
1√
N

)
(2.37)

we see by using property 1 that

|vS|n = O

(√
N

(
lnN√
N

)n−1)
(2.38)

and recalling the expression appearing in formula (2.28)

α(ϕ|θ) = −
∞∑
n=2

(−vS)n−1(ϕ|θ)v(θ) (2.39)

we see that

|α| = O(1)

|α|± = O

(
lnN

N

)
(2.40)

and that the series defining(1 +A)−1 converges. We have, of course,

[B2(1 +B)−1]p,q = p

q
[A2(1 +A)−1]p,q . (2.41)

If we introduce the operator6 of a kernel

6(ϕ|θ) = σ(ϕ − θ) (2.42)

we can write

Cp,q = ip

4π

∫ π∫
−π

[v6v](ϕ|θ) eipϕ−iqθ . (2.43)

Using formulae (2.28), (2.41) and (2.43), and the definitions ofA andB, we see that

[(1 +B)−1C(1 +A)−1− C]p,q = ip

4π

∫ π∫
−π

dθ dϕ γ (ϕ|θ) eipϕ−iqθ (2.44)

with

γ = (v + α)Sv 6 v + v 6 vS(v + α)− (v + α)Sv 6 vS(v + α). (2.45)

Using property 1 and the estimates (2.40), we get

|γ | = O

(
(lnN)2

N3/2

)
. (2.46)
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In order to obtain a final expression forT1, we need to compute

[B(1 +B)−1A(1 +A)−1]p,q = ip

2π

∫ π∫
−π

dθ dϕ[(v + α)J (v + α)](ϕ|θ) eipϕ−iqθ (2.47)

where

J (ϕ|θ) = 1

2π

∑
q

1

iq
e−iq(ϕ−θ) (2.48)

which follows again from the fact thatBp,q = (p/q)Ap,q .
We have therefore shown that we can expressT1 as

(T1)p,q = ip

2π

∫ π∫
−π

dθ dϕ eipϕ−iqθ T1(ϕ|θ) (2.49)

with

T1 = − 1
2v 6 v + 1

2γ − (v + α)J (v + α). (2.50)

Let us separateT1 into two parts

T1 = 01 +R1 (2.51)

where

01 = − 1
2v0 ·6 · v0 − v0 · J v0. (2.52)

The usefulness of this separation comes from the fact that

|v − v0| = O

(
1

N

)
(2.53)

and therefore

|v 6 v − v06 v0| = O

(
1

N3/2

)
. (2.54)

Moreover, from the definition of the kernel ofJ , equation (2.48), we see that

|J | = O(lnN) (2.55)

and therefore

|v J v − v0 J v0| = O

(
lnN

N3/2

)
(2.56)

and using the estimate (2.40) and (2.55)

|v J α + α J v + α J α| = O

(
(lnN)2

N3/2

)
. (2.57)

Combining all these estimates with that in equation (2.46), we see that

|R1| = O

(
(lnN)

N3/2

)
. (2.58)

We need to find a useful expression forT n1 . This is accomplished by the following identity

(T1)
n
p,q =

ip

2π

∫ π∫
−π

dθ dϕ eipϕ−iqθ [(T1I )
n−1 T1](ϕ|θ) (2.59)

where the operatorI has the kernel

I (θ |ϕ) = 1

2π

∑
q

iq e−iq(θ−ϕ). (2.60)
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We see therefore that

tr T n1 = Tr(T1 I )
n. (2.61)

In order to proceed further we need therefore to analyse the operatorτ = T1 I , decomposed as

τ = 0 +R (2.62)

with

0 = 01 I R = R1 I. (2.63)

From equation (2.60) it is clear that

|I | = O(N2) (2.64)

but we can also note that

I (θ |ϕ) = i(θ − ϕ) (2.65)

with

i(x) = −s ′(x) = 1

2π
(N − 1)

sin2(Nx/4)

sin(x/2)
+

1

4π

sin((N − 1)x/2)− (N − 1) sin(x/2)

sin2(x/2)
.

(2.66)

Using in this expression, inequality (2.35) and the inequality|sinx − N sin(x/N)| 6 x3/3,
one can show that

|I |± = O(N ln N). (2.67)

It follows from this that

|R| = O

(
(lnN)3√

N

)
(2.68)

|0| = O((lnN)2). (2.69)

Such estimates give

|02 − τ 2| = O

(
(lnN)5√

N

)
. (2.70)

In order to proceed further, we need to analyse in a more refined way the operator0, which
we recall is given explicitly by

−0 = 1
2v06 v0 I + v0 J v0 I. (2.71)

From the definition given in equation (2.48), we have

J (ϕ|θ) = −
∫ ϕ−θ

0
dt s(t). (2.72)

We decompose this kernel in the following way

J (ϕ|θ) = −σ(ϕ − θ)`(0) + σ(ϕ − θ)`(|ϕ − θ |) (2.73)

where the functioǹ is defined by

`(θ) =
∫ π

θ

s(t) dt. (2.74a)

To this decomposition there corresponds the following for the operators,

J = −`(0)6 +L (2.74b)
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and we can rewrite0 as

−0 = [ 1
2 − `(0)]v06 v0 I + v0Lv0 I. (2.75)

An integration by parts allows us to express the function`(θ) as

`(θ) = 1

πN
(1− cos(πN/2))− 1

πN

(1− cos(Nθ/2))

sin(θ/2)
+

1

πN

∫ π/2

θ/2

1− cosNt

(sint)2
cost dt.

(2.76)

This shows that

`(0) = 1

2
+ O

(
1

N

)
(2.77)

where we have used the fact that∫ ∞
0

1− cost

t2
= π

2
. (2.78)

Therefore, the first term in0 can be estimated as∣∣∣∣[1

2
− `(0)

]
v06 v0 I

∣∣∣∣ = O

(
lnN

N

)
. (2.79)

Using the expression of̀(θ) given by equation (2.76) in the range 06 θ 6 π , and the fact
that`(2π − θ) = `(θ), as well as the estimate|x i(x)| = O(N), we can obtain the following
properties for the last term in0

|v0Lv0 I | = O(lnN) (2.80)

|v0Lv0 I |± = O

(
(lnN)2

2

)
(2.81)

from which we conclude that

|02| = O

(
(lnN)3

N

)
(2.82)

and therefore

|τ 2| = O

(
(lnN)5√

N

)
. (2.83)

This shows that∣∣∣∣ ∞∑
n=2

(−1)n−1

n
tr T n1

∣∣∣∣ = O

(
(lnN)7√

N

)
(2.84)

and therefore, combining all these estimates,

det(1 +T1) = exp

[
−tr v0Lv0 I + O

(
(lnN)7√

N

)]
. (2.85)

It remains to compute det(1 +A). Since

trAn = Tr(vS)n (2.86)

and

|(vS)n| = O

((
(lnN)√
N

)n−1√
N

)
(2.87)

we can also conclude that

det(1 +A) = exp

[
tr(vS)− 1

2
tr(vS)2 + O

(
(lnN)2√

N

)]
. (2.88)
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Finally, using the expression for the generating function in terms of determinants
(equation (2.18)), we obtain the desired result

G = exp

{
+1

2
Tr[v2

0 S − (v0 S)
2 − v0Lv0 I ]

}
(2.89)

with an accuracy of at least((lnN)7/
√
N).

It remains to compute these traces explicitly in the limit whereN goes to infinity. We
have

−Tr v0 S = 2|u|2 + O

(
1

N

)
(2.90)

−Tr(v0 S)
2 = 8π |u|2

N

∫ π

0
cos(kN θ) s2(θ) dθ + O

(
lnN

N

)
(2.91)

and

−Tr v0Lv0 I = −4|u|2
N

s(0) `(0) + Tr(v0 S)
2

+4|u|2 k
∫ π

0
sin(kN θ) s(θ) `(θ)dθ + O

(
lnN

N

)
. (2.92)

In order to derive the last expression, we used the act thati(θ) = −s ′(θ) and`′(θ) = −s(θ).
Now all the integrals appearing in these expressions have a limit given by an absolutely

convergent integral, if we use for`(θ) the expression given in equation (2.76).
The corresponding integrals can be computed explicitly and are given by

lim
N→∞

1

N

∫ π

0
cos(kN x)s2(x) dx = 1

4π
(1− |k|)θ(1− |k|) (2.93)

and

lim
N→∞

k

∫ π

0
sin(kN x)`(x)s(x)d(x) = |k|

4π
[ln(2|k| + 1)− θ(|k| − 1) ln(2|k| − 1)] (2.94)

whereθ(x) is the heaviside step function.
We have therefore obtained, as announced, a Gaussian distribution for the generating

function

lim
N→∞

G(u) = exp[−|u|2(1− b(k))] (2.95)

whereb(k) is the well known [47] Fourier transform of the two-point cluster function

b(k) = 1− 2|k| + |k| ln(1 + 2|k|)
if |k| 6 1 and

b(k) = −1 + |k| ln 2|k| + 1

2|k| − 1
(2.96)

if |k| > 1.
This gives for the form factor

S(k) = 1

N

∣∣∣∣ N∑
j=1

eikNθj

∣∣∣∣2
an exponential distribution, with mean 1− b(k).
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3. The unitary case

In this case, the generating function

G =
〈 N∑
j=1

u(θj )

〉
(3.1)

is computed with respect to a probability distribution proportional to

|1|2 =
∣∣∣∣ ∏
N>k>`>1

(eiθk − eiθ` )

∣∣∣∣2 (3.2)

which can be written as the modulus square of a Van der Monde determinant [7]

|1|2 = |det3|2 (3.3)

where

3kj = ei(k−1)θj . (3.4)

Since

det3 =
∑
P

(−1)P
N∑
j=1

eiθj (Pj−1) (3.5)

P being a permutation, we see easily by writing|det3|2 as a double sum over permutations,
using (3.5), that

G = c det

[ ∫ π

−π
u(θ) eiθ(k−j)

]
(3.6)

wherec is some constant, which has to be 1 whenu(θ) = 1.
Introducing the same labelling as in the orthogonal case, whenN is even, we get

G = det(1 +A) (3.7)

A being the matrix already introduced,

Ap,q = 1

2π

∫ π

−π
dθ ei(p−q)θ v(θ). (3.8)

It follows therefore from the results previously established that asymptotically

G = exp{ 12 Tr[v2
0 S − (v0 S)

2]} (3.9)

and therefore, using equations (2.90), (2.91) and (2.94),

lim
N→∞

G = exp{−|u|2[1− b(k)]} (3.10)

with

b(k) = (1− |k|)θ(1− |k|) (3.11)

the Fourier transform of the two-point cluster function and this implies again for the form
factor an exponential distribution with mean 1− b(k).
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