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Abstract. We determine the probability distribution of the spectral form factor from random
matrix theory in the orthogonal and unitary case. We show thatitis an exponential one, parametrized
by the average value of this quantity.

1. Introduction

A quantity of central interest in the study of random matrices and their application to problems
of quantum chaos has been the spectral form fadip¢k) defined as

1 2

N
—_ = ikAj
Sn(k) = ; e
thej beingN eigenvalues of a deterministic or random Hamiltonian.

Usually, after some unfolding of the eigenvalues has been made, so that their average
distance is fixed to be 1, one computes either its spectral average, or some other ensemble
average and compares its value to the average value given by random matrix theory. But the
question arises to know if this average value is representative of the sample considered. Ifitis
S0, one says in the physics literature that this quantity is self-averaging.

Nuclear data collected by Bohigas [1], for example, show that the average value describes
only the mean trend of this quantity and that large fluctuations around it are observed. A
similar behaviour is observed in numerical results for the form factor of the hydrogen atom in
a strong magnetic field [2].

As recently emphasized by Prange [3], these results point to the fact that the spectral form
factor is not self-averaging. This conclusion was also reached previously by other authors
[4-6]. The question then naturally arises of how to determine the probability distribution
of the form factor. Argamaret al [6] used a semi-classical argument to conclude that this
distribution should be exponential. Prange [3] reached the same conclusion by using a random
walk analogy.

In the context of random matrix theory, this is a well-posed problem and the purpose of
this paper is to prove rigorously that random matrix theory (in the orthogonal and unitary case
at least) does indeed predict@xponential distributiotfor the form factor. The form factor is
therefore obviously not self-averaging, but its probability distribution is parametrized by one

t E-mail addressherve.kunz@epfl.ch

0305-4470/99/112171+12$19.50 © 1999 IOP Publishing Ltd 2171



2172 H Kunz

quantity only, its average value. This shows that the computation of the average value is really
the basic quantity to compute.

It would be, of course, quite interesting to see if this result of random matrix theory
explains the dispersion of the experimental data observed by Bohigas [1].

Let us note, first, that we need to keep the paranetesy (k) strictly positive in order to
have a well-posed problem, since whieg: 0 there is no limiting distribution. Moreover, we
will work with the ensemble which is technically the simplest one, namely the circular ensem-
ble. This is justified from the known fact that after unfolding all correlations become universal.
Therefore, the result should be unchanged if we take, for example, Gaussian ensembles.

The strategy used to obtain the probability distribution is the following: we compute the
generating function of the random variables

1 & 1 &

— COSkNO;, —— SiNkNG;

6; being the eigenvalue of the circular ensemble.
This generating function is written in the form

N
G= <1_[u(9_,-)>
j=1

where

_ i ikN@]
u(®) exp[ﬁ Reu €
u being a complex number. This quantity is expressed in the orthogonal case by means of
the square root of a determinant and in the unitary case by means of a determinant. These
determinants are of the form det [174, T being some matrix.
Then, using the identity

()
det(1+7) = exp[z tr T”]
n=1 n
we would like to show that, wheN tends to infinity, only the first two terms in this expansion
remain, namely

tr7 — Str 72

which are then computed explicitly.

In the unitary case, this can be done straightforwardly. The orthogonal case is different.
In this case, tf" is given by non-absolutely convergent integrals, and therefore the fact that it
vanishes in the limitv tends to infinity, whem > 3, is the result of rather subtle cancellations.
We tackle this problem by a set of ‘renormalizations’ of the matrix, to transform it to a more

reasonable matrix. ) ] o ]
In any case, the final results are that in both cases, the generation function is asymptotically

Gaussian. This shows that

1 & 1 &
X =— COSkNGO; y=— SINkNO;
VN ; ! VN ; !
are Gaussian random variables with a distribution proportional to
1
IR
20

and this shows that the probability distribution of the form fadgck) is exponential
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More technically,

lim pr{Sy(k) < x} = / d—y exp[ - X]
N—oo 0 S

S
wheres is the average value ¢y (k), in the largeN limit. Itis given (in Mehta’s notation) by
s=1—bk)

whereb (k) is the Fourier transform of the cluster two-point function.
The explicit forms of these functions are given in Mehta’s book [7] and they are produced
here at the end of sections 2 and 3.

2. The orthogonal case

The generating function can be written as

G = <ﬁu(9,~)> (2.1)

i=1

with
u(0) = expvo(9)
(178 iu* (2.2)
9) — gkNO 4 e ikNO
vo(®) VN VN

In Mehta’s book [7], this quantity is expressed by means of a determinant (equations 10.4.5
and 10.4.6 of this reference)

G? = detF (2.3)
where if N is even, theV x N matrix f is given by

Fp, = l'li / / w(@)u(@)o (6 — ) P17 do dg (2.4)

T -7
with
1 ifo >0 2.5)
o(0) = .
-1 ifo <0
and
-N 1 -—-N 3 N 1
=—+ -, —— =, ., = — = .

pP-q sty Tty 75 (2.6)
Whenu(9) = 1, G = 1, so that we can write

G = [det(1 +T)]Y2. (2.7)
The matrixT is defined as

Ty = L'lﬁ / [0(6) + v(p) + vO)v(P)]o (@ — ) P74 (2.8)

T -7

where

v(0) = u(®)—1. (2.9)
Basically, we want to compute this determinant by using the formula

o0 -1 n—1
det(1+7) =exp tr IN1+T) =expy D™ g (2.10)
n=1 n
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and show that tr” vanishes wheN — oo, andn > 3. However, this results from rather
subtle cancellations between the various terms appearin@'th tWe will arrive, therefore, at
the result by ‘renormalizing’ the matrik. For this purpose, we introduce the following three
auxiliary matrices:

Ay = % 1 do e'1 =99 (9) (2.11)
Bpg = p Apy (2.12)
7

Cpq = ;—i / ’ /_ VO ® ~ ¢) €779 do do (2.13)
so that we have

T=A+B+C. (2.14)
Therefore, we can also write the determinant as

det(1 +T) = [det(1 + A)][det(1 + B)][det(1 + T1)] (2.15)
with

Ti=@A+B)'Ccl+A)'—BA+B)tAQL+A)? (2.16)
assuming that the inverse of 14tand (1 +B) exist (this will be proven later).

Since

trA" =tr B"
we have

det(1 + A) = det(1 + B) (2.17)
and

G = [det(1 + A)][det(1 + T1)]¥2. (2.18)

We will show that tr7}* vanishes whev — oo, except forn = 1. The proof will be rather
long and we need to introduce some useful tools.

On the space of bounded functiofig) with 6 € A = [—x, 7], we define operators by
their bounded kernel, in the usual way,

s

(DF)®) = / D©19) f (¢) dy (2.19)

-7

so that the kernel of the product of two operatbrand F will be given by

(DF)@le) = | dy DOIV)F(Yle). (2.20)

-7

We will also introduce multiplication operators (always designated by small letters) as

(af)(©) =a®)f(6) (2.21)
so that the kernels @efD and Da are respectively
(aD)(Olp) = a@)D@O|p) (Da)(@lg) = D(@lp)a(p). (2.22)

We will also call the trace of an operator

TrD = /n de D(p|p) (2.23)

T
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assuming thaD (0 ]¢) is continuous on the diagonal. Let us now introduce the opesatdr
kernel

1 _
_ —ig(6—¢)
S@lg) = 5 Xq: g 110=9), (2.24)
It appears naturally when we computé. Indeed, if(vS)°(¢|0) = 8(p — 6)
1 [7 N
W= oo [ [ dodor sy tgion00) (2.25)
T -7
and of course
(B")py = g(A"),,,q. (2.26)
Moreover,
tr A" =Tr(vS)". (2.27)

Formula (2.25) is easily proved by induction by writing

(An+1)m = Z(An)p,q’ Agp
7
and inserting on the right-hand side the expression (2.254faand (2.11) forA, and using
the definition (2.24) o8 (0|¢).
(1+A)~tis defined through its series when it is convergent, which is certainly the case if
v is small enough.
Now, formally at least, we have

[A21+A)Y,, = ;—i /”/ do doy épwiqe[ - Z (—vS)"l((p|9)v(9)i|. (2.28)
- n=2

In order to see if such series convergence and to estimate them, we now introduce some norms.
We will call for an operato® with a bounded kernel
Dl = sup |D(¢l0)]
[CADIEIN
T
D+ =sup [ |D(¢l6)do (2.29)
peA J—x
T

|DI-=sup [ [D(gl0)|dy

beAN J—7
and for multiplication operators
la| = supla(6)]. (2.30)
OeA

We will use repeatedly a certain number of properties of these norms. Their proof follows
immediately from the definitions.

Property 1.
|AB| < 27 |A||B]
|AB| < [A]+|B|
(2.31)
|AB| < |Al|B|-
|AB|+ < [Al+|Bl+
sup|aB|, |Bal) < |a||B|
(2.32)

Su|aB|+, [Bal+) < |al|B]x+.
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Consider now the operatst. We have
SO|p) =50 — )

with
1 si
5(60) = _SII’.1(N9/2).
21 sin@/2)
From the inequality
Ising| > c|6|

which is valid if6 € [0, /2], wherec is some constant, we see that we have

|S| = O(N) |S|+ = O(In N).

Now since

w-o( %)

we see by using property 1 that

w-o{in () )

and recalling the expression appearing in formula (2.28)

a(plf) ==Y (—vS)" " (pl0)v(6)

n=2
we see that
le] = O(D)

InN
le|l+ = O (T)

and that the series definirig + A)~* converges. We have, of course,
(B2 +B)Y,, = 2[a%a+a)Y,,.
q

If we introduce the operatdt of a kernel

X(pl0) =o(p —0)
we can write

C,,,qzé'l—i / [ [vEv](pl0) €P¢4,

Using formulae (2.28), (2.41) and (2.43), and the definitiong ahd B, we see that

[(1+B)tc@a+A)t-C),, = ;_Z/ / do dy y (|0) €P¢19°

with

y=@w+ta)SvZv+vZovS@v+a)— (v+a)SvZvS(v+a).

Using property 1 and the estimates (2.40), we get

(In N)2
[yl =O( N2 )

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)

(2.42)

(2.43)

(2.44)

(2.45)

(2.46)
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In order to obtain a final expression 6y, we need to compute

[B(L+B) 'AL+A) 1], = —Z /n do de[(v + ) J (v + )] (¢|6) €P¢19? (2.47)
where
1 1
— —iq(p—0)
J@lo) = §q P g 4w (2.48)

which follows again from the fact tha, , = (p/q)A, 4.
We have therefore shown that we can exprgsas

(T pg = ;—5 / do de €774 Ty (p]6) (2.49)
with
le—%v2v+%y—(v+a)J(v+a). (2.50)
Let us separat@; into two parts
T =T1+Rq (251)
where
F1=—%Uo~2~vo—vo~]vo. (2.52)
The usefulness of this separation comes from the fact that
1
— | =0( = 2.53
v-uwi=0(5) (259
and therefore
1
[vE v — vy X vy =O<W) . (2.54)
Moreover, from the definition of the kernel df equation (2.48), we see that
|J| =0O(nN) (2.55)
and therefore
InN
lvJv—vgJ vl =0 (W) (2.56)
and using the estimate (2.40) and (2.55)
(In N)2
|UJO(+O[JU+O[JO(|=O<W (257)
Combining all these estimates with that in equation (2.46), we see that
(InN)
|R1| = O <W> (2.58)
We need to find a useful expression fgf. This is accomplished by the following identity
[ d o
(T}, = %f f do do €7¢79°[(T11)" " T1] (]6) (2.59)

where the operataf has the kernel

1 )
1019) = 5 > ige 10, (2.60)
q



2178 H Kunz

We see therefore that

tr 7 =Tr(TL I)". (2.61)
In order to proceed further we need therefore to analyse the operatdh I, decomposed as

t=T+R (2.62)
with

r=ry/ R=RyI. (2.63)
From equation (2.60) it is clear that

1] = O(N?) (2.64)
but we can also note that

IOlp) =i(0 —¢) (2.65)
with
i) = —5'(s) = %(N 1 SiP(Nx/4) , L Sin(N = Dx/2) — (N — 1) Sin(x/2).

sin(x/2)  4n Sint(x/2)
(2.66)

Using in this expression, inequality (2.35) and the inequadityx — N sin(x/N)| < x%/3,
one can show that

Il = O(N In N). (2.67)

It follows from this that
(In N)3)

R =0 2.68

|R| ( VN (2.68)

IT| = O((In N)?). (2.69)
Such estimates give

5
T2 — 2| :o(“r\‘/%) ) (2.70)

In order to proceed further, we need to analyse in a more refined way the ofdéeratbich
we recall is given explicitly by

—TI'=2vZvol +voJ vol. (2.72)

From the definition given in equation (2.48), we have
o—0
J(g|0) = —/ dr s(7). (2.72)
0

We decompose this kernel in the following way

J(pl60) = —o (¢ — 0)€(0) +o(p —0)t(lp —0) (2.73)
where the functiod is defined by

200) = / s(7) dr. (2.748)

0

To this decomposition there corresponds the following for the operators,
J=—0)XZ+L (2.7%)
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and we can rewrit& as
—I'=[3—00)]voXvol +voLuvol. (2.75)
An integration by parts allows us to express the functi@h as

£(0) = i(1 — Cco9gnN/2)) — iw + i " ﬂ ost dt.
7N TN sin(9/2) TN Jop  (sSiND)?
(2.76)
This shows that
£(0) = 1 +0 <1> (2.77)
2 N
where we have used the fact that
*®l—-cost m
/O > =3 (2.78)
Therefore, the first term ifi can be estimated as
[% - 5(0)})0 Sl = o(lnTN). (2.79)

Using the expression df(9) given by equation (2.76) in the range06 < m, and the fact
thate(2r — 0) = £(0), as well as the estimate i (x)| = O(N), we can obtain the following
properties for the last term i

lvo L vg I| = O(In N) (2.80)
2
|UOLUO1|i:o(('”éV) ) (2.81)
from which we conclude that
3
M2 = o(('” M) ) (2.82)
N
and therefore
In N)®
?|=0 <( > . 2.83
This shows that
>\ (Dt <(In N)7>
tr7'| =0 2.84
; - ! N (2.84)
and therefore, combining all these estimates,
(In N)7>:|
det(1+Ty) = exp| —trvgLvgl +0O . 2.85
( 1) p[ oL vo ( N ( )
It remains to compute dét + A). Since
tr A" = Tr(vS)" (2.86)
and
(InN) )”‘1 )
vS)"| =0 VN 2.87
@S| (( o (2.87)

we can also conclude that

2
det(1+A) = exp[tr(vS) — %tr(vS)z + o(“% )} (2.88)
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Finally, using the expression for the generating function in terms of determinants
(equation (2.18)), we obtain the desired result

1.5 2
G =exp ?Tr[vo S — (voS)° —vo Lugl] (2.89)
with an accuracy of at leastin N)”/+/N).

It remains to compute these traces explicitly in the limit whargoes to infinity. We
have

1
—Trve§ = 2|u|2+O<N> (2.90)
8lul?> (™ InN
—Tr(vo §)% = M/ cogkN 6) s2(0) do + O (n—> (2.91)
N [ N

and

_ |”|2 2
—TrvwoLvl = 5(0) £(0) + Tr(vg S)

P InN
+Aul’k | sin(kN 6)s(0)£©)do + O —~ ) (2.92)
0

In order to derive the last expression, we used the act that= —s'(6) and?’ () = —s(0).

Now all the integrals appearing in these expressions have a limit given by an absolutely
convergent integral, if we use fé(0) the expression given in equation (2.76).
The corresponding integrals can be computed explicitly and are given by

N—oo

lim * /n cogkN x)s2(x) dx = i(l — kDO — |k|) (2.93)
N 0 4
and

lim k/ﬂ SINEN x)€(x)s(x) d(x) = %[m(am +1) —0(kl =D In@kl—1]  (2.94)
0

N—o0

wheref (x) is the heaviside step function.
We have therefore obtained, as announced, a Gaussian distribution for the generating
function

Nlim G (u) = exp[—|ul?(1 — b(k))] (2.95)

whereb (k) is the well known [47] Fourier transform of the two-point cluster function
b(k) = 1 — 2Jk| + |k|In(1 + 2lk|)
if k] <1land

2k| +1
2/k| — 1

b(k) = —1 + k| In (2.96)

if k] > 1.
This gives for the form factor

N
Z kNG,
j=1

an exponential distribution, with mean-1b (k).

2

1
Sk) = N
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3. The unitary case

In this case, the generating function

G- <iu<e,->> (3.1)

j=1
is computed with respect to a probability distribution proportional to
2

|A|2 — l_[ (ei9k _ ei‘)z) (32)
N>k>e>1

which can be written as the modulus square of a Van der Monde determinant [7]

|A|? = |detA|? (3.3)
where

Ay = kD9 (3.4)
Since

N . .
detA =) (-1F > &b (3.5)
P j=1

P being a permutation, we see easily by writioigtA |2 as a double sum over permutations,
using (3.5), that

G=c det[/ﬂ u(e)éf’“‘—ﬂ} (3.6)

T
wherec is some constant, which has to be 1 whef) = 1.
Introducing the same labelling as in the orthogonal case, Wisheneven, we get

G =det(1+A) (3.7)

A being the matrix already introduced,
1 [ o

Ay = ] do €P=99 y(9). (3.8)
It follows therefore from the results previously established that asymptotically

G = exp(2 Tr[v3 S — (vo 5)°]} (3.9)
and therefore, using equations (2.90), (2.91) and (2.94),

Jim G = exp{—|ul’[1 — b(k)]} (3.10)
with

b(k) = (1 — kDO — |kI) (3.11)

the Fourier transform of the two-point cluster function and this implies again for the form
factor an exponential distribution with mean-1b (k).
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